Abstract:Remote photoplethysmography (rPPG) enables non-contact physiological measurement but remains highly susceptible to illumination changes, motion artifacts, and limited temporal modeling. Large Language Models (LLMs) excel at capturing long-range dependencies, offering a potential solution but struggle with the continuous, noise-sensitive nature of rPPG signals due to their text-centric design. To bridge this gap, we introduce PhysLLM, a collaborative optimization framework that synergizes LLMs with domain-specific rPPG components. Specifically, the Text Prototype Guidance (TPG) strategy is proposed to establish cross-modal alignment by projecting hemodynamic features into LLM-interpretable semantic space, effectively bridging the representational gap between physiological signals and linguistic tokens. Besides, a novel Dual-Domain Stationary (DDS) Algorithm is proposed for resolving signal instability through adaptive time-frequency domain feature re-weighting. Finally, rPPG task-specific cues systematically inject physiological priors through physiological statistics, environmental contextual answering, and task description, leveraging cross-modal learning to integrate both visual and textual information, enabling dynamic adaptation to challenging scenarios like variable illumination and subject movements. Evaluation on four benchmark datasets, PhysLLM achieves state-of-the-art accuracy and robustness, demonstrating superior generalization across lighting variations and motion scenarios.
Abstract:Multi-modal representation methods have achieved advanced performance in medical applications by extracting more robust features from multi-domain data. However, existing methods usually need to train additional branches for downstream tasks, which may increase the model complexities in clinical applications as well as introduce additional human inductive bias. Besides, very few studies exploit the rich clinical knowledge embedded in clinical daily reports. To this end, we propose a novel medical generalist agent, MGA, that can address three kinds of common clinical tasks via clinical reports knowledge transformation. Unlike the existing methods, MGA can easily adapt to different tasks without specific downstream branches when their corresponding annotations are missing. More importantly, we are the first attempt to use medical professional language guidance as a transmission medium to guide the agent's behavior. The proposed method is implemented on four well-known X-ray open-source datasets, MIMIC-CXR, CheXpert, MIMIC-CXR-JPG, and MIMIC-CXR-MS. Promising results are obtained, which validate the effectiveness of our proposed MGA. Code is available at: https://github.com/SZUHvern/MGA